2. Measurement theory

Temperatures above the freezing point of silver (1234.93 K or 961.78 °C) are defined on
the International Temperature Scale of 1990 (ITS-90) [2] in terms of the ratio of spectral
radiances of two blackbody sources, one of which is maintained at the temperature of freezing
siver, gold (1337.33 K or 1064.18 °C), or copper (1357.77 K or 1084.62 °C). The 1990 NIST
Scale of Radiance Temperature (1990 NIST) is a redlization of the ITS-90 using a gold fixed-
point blackbody. In this section, the blackbody temperature will be defined in terms of the
gpectral radiance. Using the signal measurement equation, the measurement equation for the
calibration of atransfer standard will be derived.

The signal measurement equation, defined by Nicodemus and Kostkowski in 1978 [5],
relates the detector signal output, S[V]?, to the source flux input parameters through a detector
responsivity term, R, [AXV ], by the integral relationship,
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Figure 1. Schematic of opticsfor the NIST photoelectric pyrometer.

2 Asan aid to the reader, the appropriate coherent S unit in which a quantity should be expressed
isindicated in brackets when the quantity is first introduced.



where L, [Wxn®sr™] is the spectral radiance, di [m] is the wavelength band, q [rad] is the angle
between the aperture normal and the line connecting the aperture centers, dw|[sr] is the
differential solid angle originating at the source aperture as defined by the detector aperture, and
dA [m?] is the differential source aperture area. For the NIST PEP in figure 1, the spectral
responsivity R includes the spectral transmittance of the interference filters, the spectrd
transmittance of all other optical elements, and the spectral responsivity of the detector. Interms
of its specific components, the spectral responsivity is

RI :tI,OLXtI,CLXtI,letI,FZXtI,DLXtI,ECxRI,PEP’ (2)

wheret, o isthe spectral transmittance of the objective lens, t, ¢ is the spectral transmittance of
the collimating lens, t, ;1 IS the spectral transmittance of the 1 nm bandpass interference filter,
t| 2 is the spectral transmittance of the 10 nm bandpass interference filter, t, p. is the spectral
transmittance of the diverging lens, t gc is the spectral transmittance of the evacuated window
cell, and R pep IS the detector absolute spectral responsivity.
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Figure 2. Blackbody spectral distribution. Asthe temperature increases, the peak moves towards shorter wavelengths,
and the dope increases at each wavelength.



Spectral radiance L, is the radiant power contained in a defined area, solid angle,
direction, and wavelength interval,

L, = d°F / dA xcosa xdb xdl |, (3)

where F is the radiant flux [W], A isthe source area, a is the plane angle between the surface
normal and the direction of propagation [rad], b is the solid angle about that direction [s], and |
is the wavelength [m]. A few blackbody distributions from 250 nm to 2500 nm between 800 °C
and 2300 °C are illustrated in figure 2. For an idea blackbody in a vacuum environment,
the relation between spectral radiance, wavelength, and temperature is given by the Planck
eguation [6],
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where ¢y, isthe first radiation constant in radiance form with a value of 119.1044 WY, ¢; is the
second radiation constant with a value of 1.4388 x 10" nmXK [7], | is the wavelength in vacuum,
and T is the temperature [K]. The Planck equation in the form of eq (4) is the definition for an
ideal blackbody radiator. When using a non-ideal blackbody such as a fixed-point blackbody to
realize the temperature scale, the following form of the Planck equation is used,

L =—— 1 , (5)
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and temperature is defined as a function of spectral radiance using the following equation
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where g isthe spectral emissivity of the blackbody (which is equal to unity in the case of an ideal
blackbody), 8 is the wavelength in air, and n, is the refractive index of ar a 15°C and
101,325 Pa. From the Cauchy [8] formula,

n =1+ (2726.43+12.288nm?(1 2" 10°)+0.3555 nm*/(| ** 10*?)) 107 , (7)

the refractive index of air at 655.3 nm is about 1.00028. The temperatures described in this
document are radiance temperatures. The radiance temperature of a radiator is equivaent to the
temperature of a blackbody with the same radiant intensity of the radiator's surface at a specified
wavelength. The relationship between the radiance temperature and the true or thermodynamic
temperature of a blackbody is given by:
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where T is the thermodynamic temperature, Tsis the radiance temperature, 8is the mean effective
wavelength of the NIST PEP (655.3 nm), and g is the estimated emissivity of the blackbody
(0.99).

Determination of the spectral radiance temperature of a working standard (WS) lamp
requires measurement of the ratio r,
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of the signals from the transfer standard and the goldpoint blackbody (Au) with the NIST PEP.
From eq (2), this measured ratio is actualy
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To smplify the complex expression in eq (10), it is assumed that the spectral radiances L, ws and
L au Spectral responsivities R ws and R ay, and amplifier gains Gws and Ga, are independent of
both direction and spatial location. Furthermore, these three variables can be defined by unique
for the transfer source and the gold-point blackbody at equivalent wavelengths (to be defined
later) over the same small wavelength band dl . The solid angle terms can be replaced with the
definition of the solid angle,
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where Aq is the detector area [m?], qq is the angle between the optical axis and the normal to the
detector surface [rad], and D is the distance between the detector area and the source area [m].
Assuming that the areas are independent of direction and that the solid angles are independent of
area or spatial location, this ratio then becomes
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where A, is the source area [], g is the angle between the optical axis and the normal to the
source surface [rad], R ws IS the detector responsivity when viewing the transfer source, and
R au IS the detector responsivity when viewing the gold-point blackbody. The spectral
responsivities R ws and R a, are assumed to be equal. If the source aperture areas dArs and



dAa., source solid angles dwys and dwy,, and the source inclination angles qws and ga, are the
same for measuring both the transfer standard and the gold-point blackbody, the measured ratio
simplifies to the expression,

rl - L| ,WS - L| (TWS) . (13)
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This relationship is the defining equation for the ITS-90 above 1337.33 K. Intermsof eq (4), it
can be written at a discrete wavelength, | , as
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where L, (Tws) and L, (Ta,) are the spectral radiances of the two blackbodies at temperatures T
and Tay, Tau is the temperature of freezing gold defined as 1337.33 K, and r; is their ratio. In
principle, a measurement of the ratio at a discrete wavelength with a linear response instrument
yields the value of T.

The radiance temperature scale is typically maintained and disseminated on tungsten
ribbon filament lamps, which possess a repeatable lamp current versus radiance temperature
relationship. At the NIST, a pyrometer system is presently being used with a mean effective
wavelength of 655.3 nm. This method requires that the pyrometer relative spectral response
extends only over a small spectral range, or is known accurately enough to determine the
wavelength at which the integrands of eq (10) have the same ratio as the integrals. Equation (13)
above is an approximation, and, in practice, corrections, which will be presented in the next
section, are used.



